
i.”<

.’

/

A Commercial Implementation of the JPL Virtual Reality

Calibration Technology for Telerobotics

Won S, Kim Robert Brown, Brian Cllristmscn,  Chris Beale

Jet Propulsion I,abcmatory Dencb l{ol-mtics,  Inc.

M/S 198-219 3285 1,apccr  l{oacl  West

4800 Oak Grove Drive P. 0. ]]OX 214687

l’asadena, California 9“1 109 Auburn Hills,  Micl]igan  48321-4687

crnail:  wonsoo~tclcroboti  cs.jpl. nasa. gov cnlai]:  bob~ldc]lcb.com

Abstract

l’here js a growing interest ill the virtual reality (VR)  calibration technique of matching graphi-

cally simulated virtual environments in 3-1) geometry and perspective with actual  video camera views.

Jet l’repulsion laboratory (JP1,)  recently developed such a technique that enables high-fidelity pre-

view/prcdict,ivc  displays with reliable, accurate ca~ibrated  gra])hics overlay on live video for telerobotic

applications, and demonstrated its effectiveness in a recent  J1’l,/NASA-GS}IIC  (Goddard Space I’light

Center) remote servicing task. Within NASA’s recent thrust for industrial collaboration, J 1’1, recently

established a technology cooperation agreement (g’CA ) with l)eneb  Robotics,  I]Ic. ]n this J PI,-Indust]y

cooperative ])eneb  Commercialization Task, JPI, transfers tile W{. calibration software technology to

l)eneb,  and ])eneb  inserts this software technology into its commercial product. ‘1’his joint technol-

ogy collaborative work will enable ])eneb  to commercialize an upgraclcd  industry product that will

greatly benefit both space and terrestrial telerobotic  applications. On-going new developments of

semi-automatic VR calibration techniques using multi-resolution correlation-l)  ased area matching and

edge-based feature matc}iing are also presented as evolving technical additions to enhance the existing

operator-interactive VR calibration technology significantly.
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I. Introduction

Graphic simulation has been widely used in telcrobotic  applications during the off-line task analysis

and planning and also during the introductory operator training. lIowcver,  the use of graphic simula-

. tion during the on-line telerobotic  operation, for exanip]e,  as a tool for on-line preview and predictive

visualization, has been limited due to the lack of accurate matching between the simulated environment

and the actual remote site task environment, J PL recently developed a. virtual reality (VR) calibra-

tion technique [16]-[17] that enables reliable and accurate nlatching  by operator-interactive camera

calibration and object localization procedures with new linear/nonlinear Icast-squares  algorithms for

multiple-camera views. This VR calibration capability enables accurate visual planning, preview, and

prediction of robot motion by overlaying virtual gral)hical  inlages on real images, providing powerful

new graphics-based tools for real-time simulation and control of robots in both terrestrial and space

applications. A recent J1’L/NASA-GSl~C  ORU (Orbital Replacement Unit) cbangeout  remote servicing

task performed in May, 1993 demonstrated the usefulness of the developed VR calibration technique

and its application to preview/predictive displays with calibrated graphics overlay on live video.

This paper describes our on-going J PI,/l)eneb  joint technology collabol ative  work that is enabling

Deneb to commercialize an upgraded industrial product with a VR calibration video overlay option.

The first release of the option, which will be available by the end of lkbruary  1995, will be limited to

“manual operator-interactive” VR calibration for fixed cameras. The second release, which is planned to

be available by September 1995, will include ‘(senli-a,utoma  tic,” VR calibration capability for both fixed

and moving cameras as an cvo]ving  technical addition to the first year’s “lllanual  operator-interactive”

VI{ calibration option. %ction  2 briefly summarizes the pre~ious]y demonstrated J] ’I, VR calibration

tcchniquc,  and Section 3 describes the actual on-going implelllentation  of the VR calibration technique

on a ])cneb’s commercial product l’l?I, EC, RIP. %ction  4 presents our current ncw developments of senli-

autornat  ic VR calibration techniques by using correlation-based area mat thing and edge-based feat urc

matching. Section 5 illustrates future planned work and potential space and terrestrial applications.

The conclusion appears in Section 6.



‘1’he  existing VR calibration technique that was usml in tile JPI,/NASA-GSl’C  telerobotic  demon-

stration enables reliable, accurate matcl  Iing through operator-interactive ca,]nera calibration and object

localization procedures. These are br;efly  described here.

2.1 Canlera Calibration LJsing  a Robot Arm

Our camera calibration method which is designed for calibrated graphics overlay has three key new

features; 1) A robot  arm ;tself  is used as the calibratioll  fixture , elimillatjllg  cumbersome procedures of

using an external calibration fixture. 2) An operator-il~teractive  data entry is adopted to obtain reliable

correspondence data, since it is still difficult for a computer vision system to find correspondence points

reliably. 3) A nonlinear least-squares algorithm combined with a linear least-squares one is employed to

obtain accurate camera parameters, where the linear least-squares solution is used as an initial guess.

Once the camera  parameters are obtained relative to the robot arm base frame through this camera

calibration ~)rocedure,  the graphics model of the robot arm can be overlaid on the video camera view.

Details of the operator-interactive liliear/llolllitlear  camera calibration alf,orithms  and their software

listings call  be found in the recmlt JPI, report [15], which was prepared as part of the J1’1,-Industry

cooperative Deneb Commercialization Task.

2.2 Object  I,ocalizat,ion

In the or;gina]  predictive dis~)lay,  only the robot arm graI)liic  model was cwerlaicl  On live video as a,

predictor of the time-delayed robot motion. In our new approach, the object localization procedure has

been added after the camera, calibration to determine the ol~ject  pose (position and orientation) and

enable graphic overlay of both the robot arm and the object (s) on live video. Since the object pose

becomes known through object lc)calization,  our new approach enables the semi-automatic computer-

.generated trajectory  mode ;n addition to the teleoperation  mode.  Our object localization  method  has

three key new features; 1 ) An operator-interactive method  is adopted to obtain reliable correspondence

data, 2) A projection-based linear least-squares algorithm is extended to ha,lldle  multiple camera views.
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3) A nonlinear least-squares algorithm combined with the cxtcndcd  linear one is employed to obtain

an accurate object pose from multiple camera views. I)cta,ils of these projection-based linear/nonlinear

least-squares algorithms and their software listings can bc found in [1 5].

l’hc  above VR calibration tcc.hniques  were applied to the J1’1,/NASA-GSII’C  remote servicing demon-

stration.  An example of a calibrated video overlay after the VR calibration is shown in Fig. 1, where

both  the robot arm ancl the object graphic models arc superilllposcd  on the video image. Experimental

measurements of calibration errors in i~lserting  a tool into the ORU I101c  indicated that the positioning

alignment accuracy achieved by the developed calibration tcr.hnique using four camera views was 5.1

mm on the average with a 10.7 ?nm maximum error at 95% confidellcc  lc~~cl.  ‘J’hc depth error was 6.5

mm on the average, with a 13.7 mm maximum depth error at 95y0 confidence ICVC].

2.3 Preview/Predictive Displays

After matching 3-1) graphic models of a virtual ellvirollnlcnt  wit}l actual camera views through the

above Vli calibration technique, the operator can now perfo] m a te]erobotics  servicing task by using

preview/predictive displays with calibrated graphics overlay c)n live video. l’review/predictive displays

allow the operator to generate the simulated robot arm trajectory in preview and then to visually

monitor and verify the actual remote robot arm motion with confidellce,  thus enhancing safety and re-

liability in remote servicing operations regardless of communication time delay. Our preview/predictive

display is useful not only for non- contact tasks but also for cc)ntact  or insertion tasks involving conlpli-

ante/impedance control in the remote site. This is because the simulated graphics arm is updated with

the actual final robot joint angle values  after  the completion of each robot arm trajectory command

at the rclnotc  site. l’his update eliminates accumulation of small ]notion execution errors as WCII as

large compensation errors due to the compliance/impcdancc  control. 1(’if;.  2 shows an example of a

preview/predictive display durin?; the performance of the JI’I /N AS A-(  JSl’C demonstration task.
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III. Irnplementation on (1’ELEGRIP

3 . 1  O p e n  A r c h i t e c t u r e

l’he  ‘1’131,EGR11’ Access framework [3] is an open architecture based upon Dynamic Shared Objects

(11 S0’s) as shown in Fig. 3. 1)S0’s provide many benefits when compared with other strategies for

incorporating user-defined modules with a ce]ltralized kernel including speed of development, access

to all internal functions and data including the entire geometric database, flexibility in development,

and minimizing platform dependence. l’he use of 1>S0’s inc.] eases speed of development because the

developer does not have to link a fixecl  library every time a change is desired. The mapping of user

libraries to application libraries occurs at run time. This enables the developer to compile and load

only the code that has changed. The use of 1)S0 libraries gives the Access developer the same level
4

of system functionality that original developers have. ]nternal  functions and data are accessed directly

with no degradation in performance.

A key feature provided by the ‘l’];]  ,EGRIP  open architecture is that it allows developers/users to

add their OW1l virtual reality calibration algorithms aTld video overlay methods, if necessary.

3.2 Camera  Viewing Model

l’he ‘1’II;l,I’;GRIP  viewing model [4] for perspective projecl ion

scribed within the viewing cone (Fig. 4). Only the geometry inside

is defi]led  by a pyramid which is in-

thc pyramid truncated by hither and

yonder planes (viewing frustum) is visible. l’he user can specify the })erspcctive  projection paralneters

such as image plane size (ll)S), focal length (II’],), and field of view allglc (1’OVY),  which are related by

11’OVY = 2 * atan(l1’S/(2*F1,  )).

.
3.3 Muti-Window Video Overlay

‘1’he ‘I1lI;I,lWIUP  Access AP1 (application programmers interface) provides a rich suite of functional-

ity which can bc used to rcplac.e and enhance internal functions , access  and cxtclld the internal database,

and rapidly develop toolkit applications, all with the guarantee of portability between TEJ,EGI{,IP rc-

leases. Video overlay leverages upon Access to create and manipulate multip]c graphics windows, en-
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hance rendering functions to effect viclco/graphics  blend, and extend the internal database to maintain

video calibration data within the TEI, F. GRI1’ camera viewing data strut.turcs.

q’hc video overlay procedure starts with the definition phase in wllicll  a standard “User View”,

q’El,lI;GIUl”s  representation of a virtual camera, is meated.  ‘j’his  can bc accolnplished  either program-

maticall  y through Access function calls, or through the traditional ‘I’EI, EG R]}) button interface. !l’he

. user then defines a live video or a captured ‘video image source for the view which is stored within the

view data structure as an Access database extension. ‘1’he  vit,w may then be displayed in an external

window, either in graphics, videc~, or blended graphics/video display mode. IIlcnding is accomplished

via a Video Overlay function registered as an Access ~)rc-display  callback systcm which draws the video

into the frame buffer just before graphics scene is lendered. When the operator wishes to proceed

with the calibration phase  of video overlay, the view wi]Idow to be calibrated is automatically placed

into video display mode. q’hc operator then chooses 3L) graphics points from any window currently

in graphics display mode and correlates them with 21) video l)oints  from the calibration view window.

l’his clata is stored with the vidcc) setup in view structure Acct!ss database extension.  Upon completion

of data point acquisition, the view is calibrated and placed into blel~ded ,g]al)hics/video display mode

from which the operator may inspect the calibration results.

“J’he  ‘J’l+;I,]~Gl{,Jl’  video over]ay  illlplelllellta,tioll  is based u~)on an applicatiorl programmers interface

“ (Al’])  layer which insulates the overlay developer from the sl,ecific.s  of video ILardwarc,  thus enabling

support over a wide range of video products. Support is cn~rrently planned for the SGI VidcoI.ah,

Galileo, lndigo2,  lnd y, and Scrius  Videcjboards  cncompassil~g  t he entire ranSc of current SGI computing

hardware from the lndy  to the Onyx.

IV. Semi-Autonlatic Virtual Reality Calibration

Semi-automatic and automatic techniques of matching gral)hic model in~agcs (virtual environments) -

to actual video images by using model-based image processi)lg  can sigllificant]y  enhance the current

“opcra,tor-interactive” Vlt calibration technique for tc]crobotic  applications. ‘1’wc) primary image match-

ing methods are 1 ) area matching that uses correlations between image regions, and 2) feature matching
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that mat ches features such as edges and corner poi] [ts between images. 1 n p;encral, area-based and

feature-based matching arc considered to be complclnentary  rather than competing with each other.

IIoth area and feature matching methods have been ilnplemented  recently to cc)lnpare  and take advan-

tage of both methods. Preliminary results are included in this paper, but further tests and improvements

are necessary.

4.1 Correlation-F3asecl  Area  Match ing

I)he correlation-based area matching algorithm that we implemented elnploys three key techniques:

1 ) multi-resolution hierarchical coarse-to-fine strategy, 2) edge-based block matching, and 3) princi-

pal axes procedure using cigen vectors of each correlation matrix. I’hc multi-resolution coarse-to-fine

strategy [1], [8], [20] provides two advantages; 1 ) coarse global matching using lower resolution images

with a larger  size of the search area p;uidcs  fine local matching using higher resolution images with

a smaller size of the search area, reducing the number  of false matches, and 2) the correlation-based

matching speed increases markedly. IIlock matching [21] has been extensively used in today’s video

compression standards such as M} ’I;G. In block matching, a reference inlagc is segmented into small

rectangular blocks, and for each block one displacement vcct or is calculated that represents the shift

of the image block to match  best in the scconcl  image. Recently  edge-based block matching, instead of

the conventional intensity-based block matching, has been successfully used for computational cfhcicncy

with similar matching performance characteristics [25]. Cc)rrclation matcl~illg  c)f image areas containing

edges yields the displacement vector that has a high confidence of accuracy alc)ng  the edge direction but

a very low confidence along the })crpendicular direction. ‘1’hcsc  difl’crexlt levels of confidence in accuracy

can be incorporated into the correlation matching algorithl)l by placing dif[krent weights, depending

u~Jon their  cigen values, along the principal slid minor ei~;en vector axes of the correlation matrix [24].

‘1’hc  details of the algorithm inlplcmclltcd  are described here.

1, Construct multi-resolution i]nagcs  from full-resolution iInagcs  (640 pixels  x 480 pixels) - 320x240

(1/2 scale for both x and y axes), 160x120(1/4 scale), 80x60 (1/8 scale), and 40x30 (1 /16 scale)

images for the graphics model image and also for the video imap;e.  ApI)ly a,) Sobcl or b) Canny edge

detector to the graphic. model images of different resolutions and g;enerate  binary edge-detected
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graphic model images. Apply a) Sobel or b) Can]iy gradient operator to the video images of

different resolutions and .gcvlerateg  ray-scalegradient  video images.

2. Start the correlation matching from the I/S-scale resolution images (the l/16-scale images were

not used ductopoor  correlation results). I’orma sampling  grid with asaInpling  interval of5 pixels

in both column and row axes of the graphic model irna~,e  for matchi]!g.  g’he template image size

is selected to be a 9x9 block,

.
3. Start the correlation matching from the 1/8-scale images (1/1 6-scale images were not used due

to poor correlation results). Scglnent the grap]lic model image into overlapping 9x9 windows as

template images with an inter-window distance of 5 pixels both horizontally and vertically. I’or

each template image that has at least one edge pixel, obtain the 11x1 1 correlation matrix by com-

puting the correlation cocfhcients between the tcmplat  e image displac.cd and the corresponding

area in the video image, where the search area window size i~l the video image is selected to be

19x1 9, and thus the displacement of the 9x9 template image is up to +5 pixels both horizontally

and vertically. At present, the mean and variallce normalized correlation [2], [10] is used as a cor-

relation measure. If the maximum correlation coefllciml  t of the corre]at  ion matrix is greater than

0.5, the template image is considered] to have the best match at the corresponding displacement,

which is represented by image displacement vector.

. 4. Repeat Steps 2 and 3 in higher resolution images to the full-scale hig]lest  rcso]ution level. Usc the

image displacement vector obtained from the immediate lower resolution to specify the location

of the search area for the next higher resolution image.

5. For each template image that, has its image disp]acerrlcnt  vector (with its maximum correlation

coefficient greater than 0.5), obtain the 3-1) position cjf an object edge point in the temple image

by using the z-buffer (depth) data of the gra~jhic model image. Also compute the corresponding

2-D image point from the image displacement vector.

6. l’or each templa,tc  image that has its image displacenlcnt  vector, compute the major (principal)

and minor eigen vcci,ors of its correlation matrix. ‘l’he eigen  vector associated with the maximum
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8.

eigcn value indicates the direction of the dominant ]inea r edge in the match area.

l’crform the nonlinear least squares object  localization using the 3-1) object points and 2-D image

points. Place lower weights along the principal axes and higher weights along the minor axes.

Remove “outlicrs” to eliminate false matches [7], and then re-do the non-linear least-squares object

localization of Step 7.

As an initial test, the above multi-resolution correlation-based matching algorithm

to a calibrated video image  used during the performance of the JPI,/NASA-GSFC

demonstration task. A graphics model of an ORU (Orbital ILeplacelncnt  lJnit)  and

has been applied

remote servicing

a video image of

the NASA-GSII’C remote site arc shown in Fig. 5a and 5b rwspectivcly. T’lic video image contains an

O]{U, an Explore spacecraft mockup, and an RllC  (Robotics Research Ccny.) arm with a servicing

tool mounted at the end of the arm. ‘l’he pose of tlic ORU graphic moc]cl  was calibrated originally

during the demonstration to match with the video image by using the existillg “operator-interactive”

Vlt calibration tecbnicluc. in l’ig. 5a, this calibrated graphic model of” the OIW was intentionally

translated by 2 cm along all three x, y, and z translational axes and rotated by 3 degrees about all three

X, Y) and z rotational aXCS to tcst the al~ove  correlation-based matching  algc)rithm.

Fig. 6a shows 1 /2, 1 /4, 1/8, and 1 /16 scale graphics model and video ilnagyx  after processing the

images with the Canny edge detector. Correlation results obtained from these images are graphically

shown in l’ig. 6b. Each square represents the 5x5 center portion of the 9x9 telnp]ate  image for which

the image displacement vector is found, and the line scgyne]ll  starting froln tllc center of the square

reprcwnts the displacement vector. Although we call  observe several instances of false matches and

missing matchcx in Fig. 6b, Step 8 of the above algol ithm yielded the dcsircrl correct solution for the

ORU object pose in this example tested for both Sobel  and Can]ly  operators, IIowever, other preliminary

tests with larger orientation errors indicated that the above co] relation-based ma.tc~ling  technique using

cclgc-dctectcd images is very sensitive to the orientation difference between the initial graphic mocle]

pose and the actual object pose in the video image, and appears to be useful only for a small initial

orientation difference of less than 2 or 3 degrees. l’or now, this technique appears to be useful only for

the fine alignment/matching of the graphic model to the videc) image. ‘.i’his  technique is of course very
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useful for object tracking with snua]l  displacements between two consecutive video image frames.

4 .2  Edge-Based  Fea tu re  Matc]ling

Feature-based matching of a video image of an object to its geometric model has been widely

investigated. ]n the feature-basul matching, features such as points and edges are used in finding

the best match between the image and model features to determine the object  pose (position and

orientation) or the camera viewing parameters.

. I~or m model feat urcs and i image features,

an exponential search problem since some model

the search for the best  nlatc,h in general results in

feat ures may not h avc corresponding image features

and vice versa due to the occlusion by other objects and the noisy eclge detection. ‘1’o cope with this

exhaustive search problcm, sevm al researchers [6], [1 1], [1 3] proposed an efficient search strategy, so

called “hypothesize-and-test” strategy, by transforming the exponential search to a polynomial one.

q’hc ‘(hypothesize-ant]-test” strategy is all iterative two-stage search consisting of hypothesis generation

and hypothesis test (verification). In the hypothesis gc)leratio]l  stage, a ncw combination of the minimal

number of model-image feature pairs is selected to determine the geo]netric  transformation between the

object model and its image. ‘J’he transformation colnputed  is then used ill the hypothesis test stage

to project the object model features onto the image and find compatilde  or aligned image features.

The model-image alignment is scored by comparing tile transformed  ]l~odcl features and image features.

The best alignment is the one that maps the most model features onto ilnage features. This two-stage
.

procedure is repeated to find a satisfactory match.

Since edges are easier to detect and more reliable than corner points, wc use edges for matching. In

the edge-basecl feature matching, three  pairs of model and image edges arc tile minimum number of edge

pairs to estimate the geometric transformation [5], [12]. The] efore, the search space is now reduced to

find the Lest triplets of model a]ld jlnage edge pairs, resulting, in a poly]lo]ilial  search. ‘1’he edge-based

feature matching algorithm implemented for our semi-autonlatic  W{ calibration is as follows:

1

.

Obtain  two separate lists of edge features, one from the graphic model image ancl  the other from

the video image,  by detecting edge pixels with a Canny operator, linking neighboring edge pixels,

and breaking the chains into approximating straight line segments. ‘J’hc Vista software distribution
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2,

3.

.

4.

.

package [1 9], [23], which wc obtained ovw the computer Internet, provides all these  cal)abilities.

lt,s related  C routines were used in our application.

Sort each edge list in the order of edge length. Remove short edges, for instance, edges smaller

t}lan 15 pixels. For the graphic model, merge edges that lie on a straight line with a relatively

small broken gap, for instance, less than a 50-pixel ga~~ between the two edges. l’or the video

image, edges on a straight line arc not merged,

Make a search list by finding conlpatible  edges

used are: 1 ) orientation difference between the

but  are considered later il~ Step 5.

for ever} model eclge. g’]ie compatibility criteria

model al~d imag;e edges less than 20 degrees, ancl

2) the distance between the moclel and image edges less than 30 pixels. A simple distance measure

from the image edge to the correspondin,e;  model edge is the nor]nal  distance from the mid point

of the image edge to the lnodel edge. Use this measure as the clistallce  between the image and

model edges, if the normal projections of the both endpoints of the inlage edge to the model edge

lie inside the model edge se,gmcnt. If one of the normal projections of the image edge endpoints

lic outside the model edge segmelit,  the distance is increased to take  into account this offset and

is dcflned as the distance betwecll the protludillg  image edge e]ldpoilit and its associated nearby

model image endpoint. If both of the normal prc)ject.io]ls  of the image edge endpoints lie outside

the model edge segment, the larger distance of the two image edge elldpoints  to their associated

nearby model edge endpoints is defined as the distance l)etween  the ill~agc  and model edges. This

distance computation is based o]l the fact that normally the image edge will not be longer than

the corresponding model eclge correctly projected [9].

Make a recluced search list from the full search list of Step 3 by ilnposing  further constraints:

1 ) remove the image edge from the list if the image edge length is greater than 1/4 of or less

than 4 times the moclel  edge length, and 2) keep only tile longest ed~;e in the list for image eclgcs

lying on a straight line. once tllc full and reduced seal”ch  lists are fou]ld, perform the following

iterative hypothesize-and-test procedure to obtain the best match and determine the object pose

(or calncra  viewing parameters). ‘1’he  reduced search list is used in the hyl)othesis  generation stage

to significantly reduce the initial search space. The full search list is used during the hypothesis
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test stage.

IIypothesis  generation. Select a triplet of model and image edge pails  in the reduced search lkt.

Drop the triplet if all three model edges are para~lel. Also drop the triplet if two of the model

edges are parallel and very C1OSC1.Y located relative to the model size. In selecting a combination

of triplets, NH, or no-match condition must bc included to consider occlusions and noisy edge

detections.

JIypothcsis  test. l’or a selected triplet, compute the geolnctric  transformation

model and its image. In our approach, we assulne  that an approximate object

between the object

pose is (or approx-

imate camera viewing parameters are) known, and a simple non-lil  Lear least-squares method is

used to compute the rotation first and then the translii,tion. With the obtained transformation,

project the object model edges onto the image and fincl the compatible, aligned image edges that

arc closest in distance as defined in Step 3. If the closest aligned image edge has other image edges

on a, straight line, these edges are also considered as ali~ned edges if they arc compatible with the

corresponding model edge. The model-image alignment score is the su]n of all the ajigned edge

lengths.

Repeat  the above hypothesize-and-test procedure of Steps 4 and 5 for the search depth levels

of 3, 4, and 5. The minimum search depth of level 3 considers tllc three longest model edges,

where each of the model  edges has at least one compatible image edge. 2’o enhance the matching

reliability, the search level is expanded to level 5. The  best rnatc.h  is the one that produces the

highest alignment score.

q’he above edge-based feature matching is being tested, and a preliminary result is shown in Figs,

7 and 8. l’ig. 7 a) and b) show straight line segments deiccted  after  Canny and l,OWC operators for

the graphics model of the ()]LU and the video image,  respectively. ‘l’lie  initial pose for the graphics

model which was an instance used in our preliminary test was obtained by translating the calibrated

graphic model by 5 cm along all three x, y, and z translational axes and by rotating the model by -5

degrees about all three x, y, and z rotational axes. l’ig. 8a snows a graphic overlay of the graphic model
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, at this initial pose on the video image, and Fig. 8b shows a graphic overlay c)f the pose of the ORU

estimated after appying  the above edge based feature matching algorithm. It is significant to note that

the algorithm was able to find a good estimate in this example even Ihough  about 50% of the visible

edges of the ORU model is occluded. The algorthim  tends to yield good estimates in most cases tested

when the initial pose is within + 5 cm and +5 degrees frc}m the actual  pose, although in some cases

the solution was not the desired one, requiring operator’s supervision. Since the area matching and

feature matching techniques are complementary, a colnbinatioll  of the correlation and feature matching

is anticipated to improve the matching results.

V. Future Work and Potential Applications

Future  planned work includes 1 ) further tests and enhancements of semi-automated VR calibration

techniques including object tracking, and 2) on-line illteracti~’e  model building; and modification.

‘l’he results of our joint development efforts will become a key enabling technology in the use and

application of augmented reality, In augmented reality i~~l~}l[:nlelltatiol~s,  knowledge of a actual envi-

ronm ent and

accurate and

user friendly

implemented

a virtual world are combined to ease user task execution. We envision wide application of

calibrated virtual worlds to plan and execute con~plex  ancl dangerous tasks. A flexible and

calibration technique is requisite for this effort. lhc VR calibration video overlay option

on TIN,lI;GRIP  through this collaborative effort will benefit both space and terrestrial

telcrobotic  applications, providing 1 ) immediate benefits to NASA for gl ound-controlled  tclerobotics

servicing in space and 2) immediate benefits to the national 1)01; (Dcpartlncnt of F,nergy) labs working

on the disposal and remediation  of nuclear waste.

In addition to the above NASA and DOE  applications, we see

otherwise impractical tasks. For example: 1 ) Casualty ‘1’raining  -

wide applications in execution of

the use of a virtual smoke and

. fire modc]s to plan and prepare for ca.su alt y situations in airplanes, boats, tall buildings, 2) Agile

Manufacturing -- the use of calibrated virtual worlds to direct manufacturing line reconfiguration with

minimal process interruption, 3) Wire Harnesses --- the usc of cabling Inode]s to aide operators in the

manufacture of complex wire harnesses, 4) Remote Surgery - wc see this technology as key to allowing
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manu fact ure of com plcx wire harnesses, 4) Remote Surgery — wc see this t echno]ogy  as key to allowing

remote surgery, transmitted video and accurate computer rnoclcls  will allow safe long distance operation,

and 5) Construction - the ability to scc where new construction should take  place and the ability to

track accuracy of construction should be invaluable.

VI. Conclusion

Within NASA’s recent  thrust for industrial collabcmation,  J 1’1, and l)cncl) ILobotics,  ]nc. established

a technology cooperation agrccrnent  (’I’CA ) on VR (virtual reality) calibration in September 1993. We

have taken the following approach in our JF’1,-Industry cooperative l)e]Lcb  Commercialization Task: 1 )

J] ’I, transfers the existing VI{ calibration technology and its evolving new technical additions to l)eneb,

2) Dene.b, cooperating with J 1’1,1 inserts this software technology into its co]nmcrcial product !l’lI;I,E-

GRII’ as tllc VR calibration video overlay option for marketing, and 3) i]) return,  NASA utilizes this

enhancement of a commercially supported product for NASA applications, ‘1’his enhanced commercial

product will greatly benefit both space and terrestrial tclerobotics. On-going significantly new technical

additions include semi-automalic VR calibration techniciues  using model-based image processing.
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F i g u r e s  ‘~

Fig, 1. An example of a calibrated overlay of both robot arm and ORU graphic

models on the video image after the virtual reality calibration.

Fig. 2. An example of a preview/predictive display during the performance of

the ORU extraction in the JPL/GSFC ORU changeout demonstration task.

Fig. 3. TELEGRIP’s code and data architecture.

Fig. 4. TELEGRIPS’S Viewing model.

.

I Fig. 5. a) A graphics model of the ORU and b) a video image.

Fig. 6. a) Multi-resolut”ion  edge-detected graphic and video images using

the Canny operator, and b) correlation results.

I Fig. 7. Detection of straight line segments after Canny and Lowe operators for

a) the graphic model and b) video image.

I Fig. 8. Video overlays a) before and b) after the edge-based feature matching.



nTGRIP
Main

(Databases
)

Figure 1: An example of a calibrated overlay ‘f Figure  3:

both robot arm and ORU graphic models on the
TELEGRIF”S  code and data architec-

ture. TGRIP Main contains initialization code
video image after the virtual reality calibration only. All cjther TELEG RIP functions are cent ained

in libtgrip  .SO.

Figure 2: An example of a preview/predictive dis-
play during the performance of the ORU extraction
in the JPL/GSFC  ORU changeout demonstration

•1 Vmbl.  @OmewW*,”  v!. fiti 01  maw Gaze Vecm  Lecqm
(GvL)

lr---7 /’-1

Fi~ure  4: TJ31,RGR1P’s  viewing model
task.
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